A Theoretically-Principled Sparse, Connected, and Rigid Graph Representation of Molecules

Shih-Hsin Wang University of Utah

shwang@math.utah.edu

ICLR 2025 Oral Presentation

Shih-Hsin Wang^{*1}

Yuhao Huang^{*1}

Justin Baker²

Yuan-En Sun³

Qi Tang⁴

Bao Wang¹

- ¹Department of Mathematics and Scientific Computing and Imaging (SCI) Institute, University of Utah
- ² Department of Mathematics, UCLA
- ³Department of Biochemistry, University of Utah
- $\overset{\cdot}{}_{\text{School of Computational Science and Engineering, Georgia Tech}$

0000		

Motivation: Why Graph Structure Matters

- Molecules as 3D point clouds
- Need graph structure to apply GNNs
- Geometric graph's properties \rightarrow GNN's performance

0000	00000		

What Makes a Good Geometric Graph?

- Sparsity: # of edges $\downarrow \Rightarrow$ computational efficiency \uparrow
- Connectedness: ensures message passing across all nodes
- Rigidity: uniquely determine 3D geometry

Limitations of Existing Graph Constructions

1 Introduction

- No method satisfies sparsity, connectedness, and rigidity simultaneously.
- Take radial cutoff graph as an example:
 - Small cutoff \rightarrow sparse but disconnected
 - Large cutoff \rightarrow connected but dense

 $\mathsf{Cutoff} = 12$

 $\mathsf{Cutoff} = 16$

Introduction ○○○●		

Our Goals

- Build graphs that are: Sparse, Connected, Rigid
- No hyperparameter tuning
- Theoretical guarantees for GNN performance

SCHull (Ours)

		Methods ●○○○○			
--	--	------------------	--	--	--

Our Solution: Spherical Convex Hull (SCHull) ² Methods

• **Step 1**: Center the point cloud and project each point onto the unit sphere.

00000		

Our Solution: Spherical Convex Hull (SCHull) 2 Methods

• **Step 2**: Build the convex hull of projected points.

|--|

Our Solution: Spherical Convex Hull (SCHull) 2 Methods

• Step 3: Convex hull's edges define the graph's connections.

2 Methods

- Hyperparameter-Free: No tuning required.
- Sparsity & Connectedness: Convex hull gives a connected graph with #Edges $< 3 \cdot \#$ Nodes.

Methods ○○○○●		

Why It Works 2 Methods

- **Rigidity**: Geometry is restored via:
 - Edges: edge length & dihedral angle (from convex hull)
 - Nodes: distance to center
- Theoretical Guarantee: with mild assumptions,

1-layer GNN can distinguish SCHull graphs of any two point clouds up to rigid motion.

	1 Layer	2 Layers	# Edges / # Nodes	# Components
Radius Graph ($r=1.8$) w/ d_{ij}	50.0 ± 0.0	50.0 ± 0.0	1.0	(1, 2)
Radius Graph ($r=2.5$) w/ d_{ij}	50.0 ± 0.0	51.0 ± 3.0	3.0	1
Radius Graph ($r=3.0$) w/ d_{ij}	60.5 ± 11.1	57.2 ± 9.1	5.0	1
Complete Graph w/ d_{ij}	$59.0\pm 6.6.0$	50.0 ± 0.0	6.5	1
SCHull w/ d_{ij}	100.0 ± 0.0	100.0 ± 0.0	2.57	1
SCHull w/ d_{ij} and $ au_{ij}$	100.0 ± 0.0	100.0 ± 0.0	2.57	1

Table: Comparison of GNN performance (Unit:%) on distinguishing 14-point symmetric point clouds.

	Experiments	
	000	

Numerical Results: MD17 3 Experiments

Molecule	DimeNet	DimeNet+SCHull	SphereNet	SphereNet+SCHull	LEFTNet	LEFTNet+SCHull
Aspirin Benzene Ethanol Malonaldehyde Naphthalene Toluene Uracil	$\begin{array}{c} 0.499\\ 0.187\\ 0.230\\ 0.383\\ 0.215\\ 0.210\\ 0.301\\ \end{array}$	$\begin{array}{c} 0.427 \pm .004 \\ 0.157 \pm .006 \\ 0.198 \pm .003 \\ 0.334 \pm .003 \\ 0.178 \pm .002 \\ 0.169 \pm .002 \\ 0.288 \pm .002 \end{array}$	$\begin{array}{c} 0.430 \\ 0.178 \\ 0.208 \\ 0.340 \\ 0.178 \\ 0.155 \\ 0.267 \end{array}$	$\begin{array}{c} 0.387 \pm .005 \\ 0.155 \pm .004 \\ 0.181 \pm .003 \\ 0.298 \pm .003 \\ 0.144 \pm .002 \\ 0.129 \pm .002 \\ 0.242 \pm .003 \end{array}$	$\begin{array}{c} 0.281 \\ 0.147 \\ 0.138 \\ 0.205 \\ 0.074 \\ 0.083 \\ 0.117 \end{array}$	$\begin{array}{c} \textbf{0.240} \pm .005 \\ \textbf{0.098} \pm .002 \\ \textbf{0.109} \pm .002 \\ \textbf{0.151} \pm .002 \\ \textbf{0.058} \pm .001 \\ \textbf{0.076} \pm .001 \\ \textbf{0.095} \pm .001 \end{array}$
Training Time/Epoch(s)	43 ± 0.9	$50_{\pm 0.8}$	$51_{\pm 1.0}$	$62_{\pm 1.5}$	24 ± 0.5	$28_{\pm 0.5}$

Table: Test MAEs of MD17 dataset vector-valued properties prediction.

		Experiments		
0000	00000	000	0000	000

Numerical Results: Fold & React

3 Experiments

Method	React	Avg. Time		Fold			Avg. Time
		-	Fold	Super	Family	Avg.	
GCN [5]	67.3		16.8	21.3	82.8	40.3	-
IEConv [3]	87.2	-	45.0	69.7	98.9	71.2	-
DWNN [6]	76.7	-	31.8	37.8	85.2	51.5	-
GearNet [9]	79.4	-	28.4	42.6	95.3	55.4	-
HoloProt [7]	78.9	-	-	-	-	-	-
MACE [1]	-	-	23.7 ± 0.5	21.4 ± 0.5	60.2 ± 0.2	35.1	114 ± 0.5
MACE+SCHull	-	-	$27.0_{\pm 0.6}$	23.1 ± 0.5	$65.0_{\pm 0.2}$	38.4	135 ± 0.5
SEGNN [2]	-	-	$28.8_{\pm 0.6}$	$30.3_{\pm 0.6}$	$77.1_{\pm 0.3}$	45.4	$121_{\pm 0.7}$
SEGNN+SCHull	-	-	32.0 ± 0.4	36.8 ± 0.7	86.9 ± 0.3	51.9	152 ± 0.5
GVP-GNN [4]	65.5	320 _{±5}	16.0	22.5	83.8	40.8	106.3 ± 0.5
GVP-GNN + SCHull	$77.1_{\pm 0.5}$	$345_{\pm 5}$	$24.5_{\pm 0.3}$	27.1 ± 0.2	$88.6_{\pm 0.3}$	46.7	$111.5_{\pm 0.5}$
ProNet-Amino-Acid [8] ProNet-Amino Acid+SCHull	86.0 87.9 _{±0.3}	$210_{\pm 5} \\ 221_{\pm 6}$	51.5 $55.2_{\pm 0.2}$	69.9 73.9 _{±0.2}	99.0 99.1 _{±0.1}	73.5 76.1	$70.5_{\pm 0.5}$ $73.8_{\pm 0.5}$
ProNet-Backbone [8] ProNet-Backbone+SCHull	$^{86.4}_{88.1_{\pm0.3}}$	$213 \pm 5 \\ 230 \pm 5$	52.7 56 .1 _{±0.3}	70.3 74.6 ±0.2	99.3 99 .4 _{±0.1}	74.1 76 .7	$71.4_{\pm 0.8}$ $75.8_{\pm 0.5}$

Table: Accuracy (%) on protein fold and enzyme reaction classification tasks. Ave. Time denotes the average time per training epoch. The top results are in boldface. SCHull consistently improves baseline models.

Numerical Results: LBA 3 Experiments

Method	LBA				Avg. Time
	RMSE↓	Pearson↑	Spearman↑	Kendall↑	
IEConv [3]	1.554	0.414	0.428	-	-
HoloProt-Full Surface [7]	1.464	0.509	0.500	-	-
HoloProt-Superpixel [7]	1.491	0.491	0.482	-	-
GVP-GNN [4]	1.529 ± 0.001	0.441 ± 0.001	$0.432_{\pm 0.002}$	0.301 ± 0.002	$48.6_{\pm 0.6}$
GVP-GNN + SCHull	1.401 ± 0.001	0.475 ± 0.001	$0.459_{\pm 0.001}$	0.335 ± 0.002	$53.6_{\pm 0.6}$
ProNet-Amino-Acid [8]	1.455	0.536	0.526	0.465 ± 0.001	31.7 ± 0.5
ProNet-Amino Acid+SCHull	1.355 ± 0.002	0.556 ± 0.001	0.568 ± 0.001	0.512 ± 0.001	33.9 ± 0.5
ProNet-Backbone [8]	1.458	0.546	0.550	0.481 ± 0.001	32.1 ± 0.5
ProNet-Backbone+SCHull	$1.321_{\pm 0.002}$	$0.581_{\pm 0.001}$	$0.578_{\pm 0.1}$	$0.535_{\pm 0.001}$	$34.4_{\pm 0.5}$

Table: RMSE/Pearson Correlation/Spearman Correlation/Kendall Correlation on the LBA Test Dataset. Ave. Time refers to the average running time of one epoch in model training.

	Discussion ●○○○○	

When to Use SCHull 4 Discussion

- Struggling to balance sparsity, connectedness, and rigidity? SCHull provides a principled solution — no hyperparameters needed.
- How to apply SCHull:
 - Replace: Use SCHull alone.
 - Augment: Combine with domain-specific (sparse) graphs.
- Beyond Molecules: Plug SCHull into any 3D graph learning pipeline minimal cost, broad utility.
- Takeaway:

A lightweight, geometry-aware graph — usable with or without existing graphs.

Use Cases: Where SCHull Helps

4 Discussion

- Fragment-based Pipelines
 - Issue: Fragmentation causes variable distances between nodes.
 - SCHull: Builds edges without global thresholds.

LLM-based Models

- Issue: LLMs lack inductive bias for 3D geometry.
- SCHull: Provides lightweight, geometry-aware graphs.

	Discussion ○○●○	

Empirical Evidence: React & LBA

4 Discussion

Method	Acc.	Ave.Time
GVP-GNN	65.5	320
ProNet-Backbone	86.4	213
Fragment + SCHull	87.2	116
Fragment + SCHull + Mamba	88.4	157

Table: Accuracy (%) on enzyme reaction classification tasks. Ave. Time denotes the average time per training epoch.

Method	RMSE (↓)	Pearson (↑)	Spearman (↑)	Ave.Time (↓)
GVP-GNN	1.529	0.441	0.432	49
ProNet-Backbone	1.458	0.546	0.550	32
Fragment + SCHull	1.435	0.579	0.591	24
Fragment + SCHull + Mamba	1.399	0.614	0.610	29

Table: RMSE/Pearson Correlation/Spearman Correlation on the LBA Test Dataset.

Summary & Code Access 4 Discussion

- SCHull Graph Construction:
 - Sparse, connected, and rigid.
 - Hyperparameter-free and theoretically principled.
 - Consistently strong across both synthetic and real-world tasks.
- Resources:
 - Code, paper, and slides available online.
 - Scan the QR code or visit my website to try it out.

		References ●●●
References		

5 References

- Ilyes Batatia, Dávid Péter Kovács, Gregor NC Simm, Christoph Ortner, and Gábor Csányi. Mace: Higher order equivariant message passing neural networks for fast and accurate force fields. arXiv preprint arXiv:2206.07697, 2022.
- Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric and physical quantities improve e (3) equivariant message passing, 2021. URL https://arxiv. org/abs/2110.02905.
- Pedro Hermosilla, Marco Schäfer, Matěj Lang, Gloria Fackelmann, Pere Pau Vázquez, Barbora Kozlíková, Michael Krone, Tobias Ritschel, and Timo Ropinski.
 Intrinsic-extrinsic convolution and pooling for learning on 3d protein structures. arXiv preprint arXiv:2007.06252, 2020.
- Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron Dror. Learning from protein structure with geometric vector perceptrons. In International Conference on Learning Representations, 2020.

		References

References 5 References

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International Conference on Learning Representations, 2017.

Jiahan Li.

Directed weight neural networks for protein structure representation learning. *arXiv preprint arXiv:2201.13299*, 2022.

Vignesh Ram Somnath, Charlotte Bunne, and Andreas Krause.
 Multi-scale representation learning on proteins.
 Advances in Neural Information Processing Systems, 34:25244–25255, 2021.

Limei Wang, Haoran Liu, Yi Liu, Jerry Kurtin, and Shuiwang Ji. Learning hierarchical protein representations via complete 3d graph networks. *arXiv preprint arXiv:2207.12600*, 2022.

		References

References 5 References

Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, and Jian Tang.
 Protein representation learning by geometric structure pretraining.
 arXiv preprint arXiv:2203.06125, 2022.